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History Matching as an Inverse Problem

In forward problems, the evolutionary state of a system is predicted from some predictive model,
given auxiliary conditions and physical properties. Physical properties are referred to as model
parameters. One example of a forward problem is to predict pressures and saturations of gridblocks
and well rates of a reservoir versus time, given the initial state and the geometry of the reservoir,
the rock property fields and fluid properties.

In an inverse problem, given a finite number of observed data which are functions of state vari-
ables, one aims to infer information about model parameters. Observed data contain measurement
error.

History matching is a discrete inverse problem which is characterized by a finite number of
model parameters. The history matching process consists of estimating reservoir properties through
matching predicted data to reservoir production history (observed data).

It is well-known that large scale inverse problems are usually ill-posed as there are conceptually
an infinite number of models that match the data. Three conditions for a well-posed problem are
existence, uniqueness and stability of the solution or solutions.

Example

Forward problem: given the reservoir properties (permeability and porosity distribution, initial fluid
contacts, fluid properties, etc. ) calculate the cumulative oil and water production versus time.

Inverse problem: given the geostatistical data (prior knowledge) and production history, calculate
the P10 and P90 of permeability/porosity value at the i, j, kth gridblock.

A Priori and A Posteriori Probability Density Functions

Here the Nm-dimensional vector of model parameters is denoted by m and it can include horizontal
and vertical log permeability and porosity of gridblocks. Permeability fields are assumed to have a
log-normal distribution, while porosity fields are assumed to have normal distribution.

The prior uncertainty in the model parameters is described by a pdf. If the prior pdf has a
Gaussian distribution, it can be fully described by its mean and the covariance. To show a Gaussian
prior distribution, with m denoting the random vector of model parameters, the following notation
is used:

m ∼ N(mprior, CM ), (1)
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which means the random vector m has a normal (Gaussian) distribution with mean mprior and
covariance matrix CM . The prior pdf is given by

f(m) = a1 exp
[
− 1

2
(m−mprior)

TC−1
M (m−mprior)

]
, (2)

where a1 is the normalizing constant. The Nd-dimensional column vector of predicted data d is
related to the vector of model parameters m by

d = g(m). (3)

In the problems of interest to us, g(m) is the simulator output when it is ran with the given m,
e.g. well by well phase rates.

If m is the vector of true model parameters, then d is referred to as true data. However,
what is available is observed data which is the true data corrupted with measurement error. The
difference between true data, dtrue, and the corresponding vector of observed data, dobs, represents
measurement error εd, i.e.,

εd = dtrue − dobs. (4)

It is usually reasonable to assume that measurement error has a Gaussian distribution with mean
zero and an Nd×Nd covariance matrix CD. In other words, observed data is a random vector that
has a Gaussian distribution with mean of dtrue = g(mtrue) and covariance matrix CD. The Gaussian
pdf is expressed as

f(dobs|m) = f(εd) = a2 exp
[
− 1

2
(dobs − g(m))TC−1

D (dobs − g(m))
]
, (5)

where a2 is the normalizing constant. This pdf characterizes the uncertainty in observed data, dobs,
given the model parameters, m. As dobs is given, Eq. 5 gives the likelihood of m given dobs denoted
by L(m|dobs); the value of L(m|dobs) is greater if the predicted data corresponding to the model m
is closer to dobs. If the data includes only production data ( and not seismic data), then the Nd×Nd
covariance matrix for measurement error is diagonal, i.e.,

CD =


σ2
d,1 0 . . . 0

0 σ2
d,2 . . . 0

...
...

. . .
...

0 0 . . . σ2
d,Nd

 , (6)

where, σ2
d,i, i = 1, . . . Nd, is the variance of the measurement error of the ith observed data.

According to the Bayes Theorem (Tarantola, 1987; Oliver et al., 2008), the posterior pdf of the
model parameters conditional to the observed data is proportional to the product of the prior pdf
and the likelihood function for the model parameters:

f(m|dobs) ∝ f(m)L(m|dobs). (7)

Using Eqs. 2 and 5 in Eq. 7, the posterior pdf of model parameters conditioned to observed data
can be written as

f(m|dobs) = a exp(−O(m)), (8)

where a is the normalizing constant and O(m) which is referred to as the total objective function, is

O(m) =
1

2
(m−mprior)

TC−1
M (m−mprior) +

1

2
(g(m)− dobs)TC−1

D (g(m)− dobs)

= Om(m) +Od(m). (9)

The total objective function has two parts, the model mismatch part, Om, and the data mismatch
term, Od. The model mismatch part, which comes from the prior pdf, provides regularization to
avoid unrealistic changes in model parameters.
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The Sensitivity Matrix

One way to minimize the objective function of Eq. 9 is using the gradient based algorithms, in
particular the Gauss-Newton method. In the Gauss-Newton method of minimizing the objective
function O(m), given by Eq. 9, the search direction δml+1 at the lth iteration, is generated from

Hlδm
l+1 = −∇Ol, (10)

where ∇Ol is the gradient of O(m) evaluate at ml, given by

∇Ol = C−1
M (ml −mprior) +GTl {C−1

D (g(ml)− dobs)}, (11)

and Hl is the GN-Hessian matrix, given by

Hl = C−1
M +GTl C

−1
D Gl. (12)

G is the matrix of total derivatives of the predicted data, gi, i = 1, 2, . . . , Nd, with respect to the
model parameters, which is called the sensitivity matrix (sometimes Jacobian) and is defined as

G =
[
Gi,j

]
=
[ ∂gi
∂mj

]
, (13)

for i = 1, 2, . . . , Nd and j = 1, 2, . . . , Nm. Thus G is an Nd × Nm matrix. Here and in the rest of
this thesis, G denotes the sensitivity matrix, given by

G =


∂g1
∂m1

∂g1
∂m2

. . . ∂g1
∂mNm

∂g2
∂m1

∂g2
∂m2

. . . ∂g2
∂mNm

...
...

...
...

∂gNd

∂m1

∂gNd

∂m2
. . .

∂gNd

∂mNm

 , (14)

where the (i, j) entry of the matrix G, denoted as ∂gi
∂mj

, is the total derivative of the ith predicted

data with respect to the jth model parameter.
The product of G times an arbitrary Nd-dimensional vector v, which is a linear combination of

the columns of G, can be computed with the “gradient simulator method” Anterion et al. (1989).
The product of GT times an arbitrary Nm-dimensional vector u, which is a linear combination of
the rows of G, can be computed with the “adjoint method” (Li et al., 2003; Zhang and Reynolds,
2002). These methods are discussed in Oliver et al. (2008).

The whole sensitivity matrix, G, can be formed by either Nm applications of the gradient simu-
lator method or Nd adjoint solutions. If both Nm and Nd are very large, forming the matrix G can
be computationally very expensive; because of this fact, a direct application of the GN algorithm to
large scale problems is not efficient.

For the nonlinear conjugate gradient method (Makhlouf et al., 1993; Chu et al., 2000; Kalita,
2000), and for the quasi-Newton methods, explicit computation of the full sensitivity matrix is not
necessary. Both algorithms use the gradient information, and to apply them, only the product of G
times a vector and/or the product of GT times a vector are required. Among the quasi-Newton meth-
ods, the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method has been successfully
applied to history matching problems (Zhang and Reynolds, 2002; Gao and Reynolds, 2006).

Adjoint Method

Consider the simulation equations:

fn+1 = fn+1(yn+1, yn,m) = 0, n = 0, 1, 2, . . . L− 1 (15)
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yn denotes the Ny-dimensional vector of primary variables that we solve for in the simulator at the
nth time-step (tn), i.e. pressure, saturation or Rs of all gridblocks in a black oil simulator. Note
that for the fully implicit simulator, yn contains the converged values of primary variables computed
at the last Newton-Raphson iteration. L is the number of time-steps. Eq. 15 represents all the Ny
equations that we solve to obtain yn+1 after having obtained yn. m denotes the Nm-dimensional
vector of model parameters, e.g. log-permeability and porosity of all gridblocks.

Our objective is to calculate the sensitivity of β with respect to all model parameters, i.e.,
∂β/∂mi, i = 1, . . . Nm. The derivation here follows that of (Li et al., 2003; Oliver et al., 2008).

β is a scalar function of predicted data,

β = β(y1, y2, . . . , yL,m). (16)

Adjoint all the simulator equations f1, f2, . . . fL using vector of Lagrange multipliers, λn, n =
1, . . . , L+ 1:

J = β +

L∑
n=0

λTn+1f
n+1(yn+1, yn,m). (17)

Note that each λn+1 is a Ny-dimensional column vector, i.e.,

λn+1 = [λn+1,1, λn+1,2, . . . , λn+1,Ny
]T . (18)

There are a total of Ny× (L+1) flow equations, and for each flow equation there is one Lagrange
multiplier.

Take the total derivative:

dJ = dβ +

L∑
n=0

λTn+1df
n+1 = dβ +

L∑
n=0

λTn+1[∇yn+1(fn+1)T ]T dyn+1

+

L∑
n=0

λTn+1[∇yn(fn+1)T ]T dyn +

L∑
n=0

λTn+1[∇m(fn+1)T ]T dm. (19)

One can rewrite the first summation as

L∑
n=0

λTn+1[∇yn+1(fn+1)T ]T dyn+1

= λTL+1[∇yL+1(fL+1)T ]T dyL+1 +

L−1∑
n=0

λTn+1[∇yn+1(fn+1)T ]T dyn+1

= λTL+1[∇yL+1(fL+1)T ]T dyL+1 +

L∑
n=1

λTn [∇yn(fn)T ]T dyn =

L∑
n=1

λTn [∇yn(fn)T ]T dyn,

(20)

where we have set λL+1 = 0.
Similarly, as λL+1 = 0, the third summation in (19) can be written as

L∑
n=0

λTn+1[∇m(fn+1)T ]T dm =

L∑
n=1

λTn [∇m(fn)T ]T dm.

(21)
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Using (20) and (21) in (19) and expanding dβ, one can obtain

dJ = (∇mβ)T dm+

L∑
n=1

(∇ynβ)T dyn +

L∑
n=1

λTn [∇yn(fn)T ]T dyn

+ λT1 [∇y0(f1)T ]T dy0 +

L∑
n=1

λTn+1[∇yn(fn+1)T ]T dyn +

L∑
n=1

λTn [∇m(fn)T ]T dm,

(22)

dJ = {(∇mβ)T +

L∑
n=1

λTn [∇m(fn)T ]T }dm+ λT1 [∇y0(f1)T ]T dy0+

L∑
n=1

{(∇ynβ)T + λTn [∇yn(fn)T ]T + λTn+1[∇yn(fn+1)T ]T }dyn.

(23)

Hence,

dJ

dm
= {(∇mβ)T +

L∑
n=1

λTn [∇m(fn)T ]T }+ λT1 [∇y0(f1)T ]T
dy0

dm
+

L∑
n=1

{(∇ynβ)T + λTn [∇yn(fn)T ]T + λTn+1[∇yn(fn+1)T ]T }dy
n

dm
,

(24)

where, y0 is the initial reservoir condition; if the initial condition is fixed and independent of m,
dy0

dm = 0. One can choose the Lagrange multipliers such that the coefficient of dyn

dm is zero, i.e.

[∇yn(fn)T ]λn = −∇ynβ −∇yn(fn+1)Tλn+1. (25)

Eq. 25 is the adjoint system of equations. To solve, set λL+1 = 0, and solve (25) sequentially
for n = L,L − 1, L − 2, . . . , 1. After calculating the Lagrange multipliers, sensitivity of β can be
computed from

dJ

dm
= ∇mβ +

L∑
n=1

∇m(fn)Tλn, (26)

where dJ
dm is an Nm-dimensional vector.

Computing the Gradient Using Adjoint

Adjoint can compute the sensitivity of β wrt all model parameters. If we set β = g(m)T v, then
∇mβ = GT v, where G is the sensitivity matrix. In order to compute the gradient of the data
mismatch term given by GT {C−1

D (g(ml) − dobs)}, simply set v = C−1
D (g(ml) − dobs), and calculate

the adjoint solution for β = g(m)T v.
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Remarks

First, note that primary variables of simulation needed to compute the gradient from the adjoint
solution are saved during the previous simulation run on disk using unformatted direct access I/O
which uses the binary format to store data record by record. This can be an issue when running
large reservoir models with many time steps.

Also note that the matrices used in calculating Lagrange multipliers are sparse, and they are
saved in sparse format.

Direct Method

The direct method, also known as the gradient simulator method, can be used to calculate the
sensitivity of all predicted data wrt one specific model parameter. Consider the simulation equations:

fn+1 = fn+1(yn+1, yn,m) = 0, n = 0, 1, 2, . . . L− 1 (27)

dfn+1 = [∇yn+1(fn+1)T ]T dyn+1 + [∇yn(fn+1)T ]T dyn + [∇m(fn+1)T ]T dm = 0 (28)

For each model parameter αi, which can be log-permeability or porosity of a gridblock, one can
solve

[∇yn+1(fn+1)T ]T
dyn+1

dαi
= −[∇yn(fn+1)T ]T

dyn

dαi
− [∇m(fn+1)T ]T

dm

dαi
, (29)

to calculate dyn+1

dαi
sequentially for n = 1, 2, . . . , L. Note that dy0

dαi
= 0. Then for any predicted data,

β, the sensitivity is calculated as

dβ

dαi
=

∂β

∂αi
+

L−1∑
n=0

∂β

∂yn+1

dyn+1

dαi
, (30)

Direct method can compute the product of G times an arbitrary vector.
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